New Information from New Maps

Albert Stebbins
Fermilab

CosmiCartography
Chicago
5 December 2007
Maps are Useful!
Maps are Useful!
Maps are Useful!

Constellations
Maps are Useful!
Science or Stamp Collecting?

Context: Proposal for SDSS ⇒ SDSS-II

- Dominant view on how to obtain funding:
 » Parametric Cosmology
 - dark energy, m_\nu, ...

- Realistic view of how science works:
 » Mapping the Sky / Astronomical Infrastructure
 » Quality maps will produce large scientific yield.
Science or Stamp Collecting?

Context: Proposal for SDSS ⇒ SDSS-II

- Dominant view on how to obtain funding:
 - Parametric Cosmology
 - dark energy, m_ν, ...

- Realistic view of how science works:
 - Mapping the Sky / Astronomical Infrastructure
 - Quality maps will produce large scientific yield.

Make it and they will come!
Quantify New Information Obtained by Better Mapping
Cartography and Parameter Estimation are Mathematically Similar Measurements with Statistical Uncertainties!

- **Parametric Cosmology:**
 - H_0, $T_γ_0$, $Ω_{m0}$, $Ω_{b0}$, $m_ν$, $σ_8$, n_s, n_t, r, w, w_A...
 - $\sim 10^1$ pixels

- **Power Spectrum Estimation:**
 - e.g. C^{TT}_ℓ
 - $\sim 10^3$ pixels

- **Cartography:**
 - $\sim 10^6$ pixels
Important Tool: Fisher Metric
a.k.a. Fisher Information Matrix

\[F[p] = \langle (\nabla_x \ln[\mathcal{L}[x | d]]) (\nabla_x \ln[\mathcal{L}[x | d]]) \rangle_d \]
\[= -\langle \nabla_x \nabla_x \ln[\mathcal{L}[x | d]] \rangle_d \]

- Inverse Fisher Matrix gives lower bound on errors of estimators

\(d \) - data
\(x \) - parameters or "map"
\(\mathcal{L} \) - likelihood function
Important Tool: Fisher Metric
a.k.a. Fisher Information Matrix

\[F[p] = \langle (\nabla_x \ln[\mathcal{L}(x | d)]) (\nabla_x \ln[\mathcal{L}(x | d)]) \rangle_d \]
\[= -\langle \nabla_x \nabla_x \ln[\mathcal{L}(x | d)] \rangle_d \]

- Inverse Fisher Matrix gives lower bound on errors of estimators
- Fisher Matrix transforms like a tensor on parameter space manifold!
 - It is parameterization independent
- It is a positive-definite rank-2 tensor.
- Can be used as a metric on parameter space
 - e.g. space of possible maps

\(d \) - data
\(x \) - parameters or "map"
\(\mathcal{L} \) - likelihood function
Important Tool: Fisher Metric
a.k.a. Fisher Information Matrix

\[
F[p] = \langle (\nabla_x \ln[\mathcal{L}[x | d]]) (\nabla_x \ln[\mathcal{L}[x | d]]) \rangle_d \\
= -\langle \nabla_x \nabla_x \ln[\mathcal{L}[x | d]] \rangle_d
\]

- Inverse Fisher Matrix gives lower bound on errors of estimators
- Fisher Matrix transforms like a tensor on parameter space manifold!
 - It is parameterization independent
- It is a positive-definite rank-2 tensor.
- Can be used as a metric on parameter space
 - e.g. space of possible maps

\[d\ - \ data\]
\[x\ - \ parameters \ or \ "map"\]
\[\mathcal{L}\ - \ likelihood \ function\]

Fisher Geometry!
What is Fisher Geometry?

- Fisher Distance:

\[d_F[x_1, x_2] = \int_{\text{geodesic}} d\ell \sqrt{x'[\ell] \cdot F[x[\ell]] \cdot x'[\ell]} \]

- For your measurement (technique) \(d_F[x_1, x_2] \) gives the "# of
What is Fisher Geometry?

- **Fisher Distance:**
 \[d_F[x_1, x_2] = \int_{\text{geodesic}} d\ell \sqrt{x'[\ell] \cdot F[x[\ell]] \cdot x'[\ell]} \]

- For your measurement (technique) \(d_F[x_1, x_2] \) gives the “# of

- **Fisher Geometry is “Physics Free”**
 - depends on limitation of measurement
 - Noise (instrumental, sky, …)
 - Sky coverage
 - Overall limitations of technique.
Fisher Volume

- Fisher Volume for measurement (B)

\[V_F^{(B)} = \int d^n x \sqrt{\text{Det}[F_B[x]]} \frac{\mathcal{L}_B[x]}{\sup[\mathcal{L}_B]} \]

» uninteresting
Fisher Volume

- Fisher Volume for measurement \((B)\)

\[
V_F^{(B)} = \int d^n x \sqrt{\text{Det}[F_B[x]]} \frac{L_B[x]}{\text{sup}[L_B]}
\]

» uninteresting

- Conditional Fisher Volume (measurement \(A\) given \(B\))

\[
V_F^{(A|B)} = \int d^n x \sqrt{\text{Det}[F_{A+B}[x]]} \frac{L_B[x]}{\text{sup}[L_B[x]]}
\]
Fisher Volume

- Fisher Volume for measurement (B)
 \[V_F^{(B)} = \int d^n x \sqrt{\text{Det}[F_B[x]]} \frac{L_B[x]}{\sup[L_B]} \]
 » uninteresting

- Conditional Fisher Volume (measurement A given B)
 \[V_F^{(A|B)} = \int d^n x \sqrt{\text{Det}[F_{A+B}[x]]} \frac{L_B[x]}{\sup[L_B[x]]} \]

Roughly: # of distinguishable results obtainable from A+B which were consistent with measurement B.
Fisher Information Number

clean it up

Natural log of # of distinguishable results obtainable from A+B which are consistent with measurement B.

\[I_F^{(A|B)} = \ln \left(\frac{V_F^{(A|B)}}{V_F^{(B)}} \right) \]
Fisher Information Number

Examples

- **Unconstrained map w/ Gaussian measurement “noise”**.
 - 2 measurements of same map with noise matrices N_A and N_B.

\[
I^{(A|B)}_{\text{unconstrained}} = \frac{1}{2} \ln[\text{Det}[I + N_B \cdot N_A^{-1}]]
\]
Fisher Information Number

Examples

- Unconstrained map w/ Gaussian measurement “noise”.
 - 2 measurements of same map with noise matrices N_A and N_B.

 $$I^{(A|B)}_{\text{unconstrained}} = \frac{1}{2} \ln[\det[I + N_B \cdot N_A^{-1}]]$$

- Gaussian map w/ Gaussian “noise” w/ known Signal
 - Signal matrix S (e.g. $P[k]$ or C_l) with noise matrices N_A, N_B.

 $$I^{(A|B)}_{\text{Gaussian}} = \frac{1}{2} \ln\left[\frac{\det[I + S \cdot N_A^{-1} + S \cdot N_B^{-1}]}{\det[I + S \cdot N_B^{-1}]}\right]$$
Fisher Information Number

Examples

- **Unconstrained map w/ Gaussian measurement “noise”.**

 » 2 measurements of same map with noise matrices N_A and N_B.

 \[
 I_{\text{unconstrained}}^{(A|B)} = \frac{1}{2} \ln \left[\text{Det} \left[I + N_B \cdot N_A^{-1} \right] \right]
 \]

- **Gaussian map w/ Gaussian “noise” w/ known Signal**

 » Signal matrix S (e.g. $P[k]$ or C_l) with noise matrices N_A, N_B.

 \[
 I_{\text{Gaussian}}^{(A|B)} = \frac{1}{2} \ln \left[\frac{\text{Det} \left[I + S \cdot N_A^{-1} + S \cdot N_B^{-1} \right]}{\text{Det} \left[I + S \cdot N_B^{-1} \right]} \right]
 \]

- **N.B.**

 \[
 \lim_{S \to \infty} I_{\text{Gaussian}}^{(A|B)} = I_{\text{unconstrained}}^{(A|B)}
 \]
Fisher Information Number

Warning

- **Fisher geometry is Physics Free (unbiased)**
 - Adding a new significant digit to the value of a well measured pixel is contributes just as much as measuring the 1st significant digit of a “new” pixel
 - A scientist might find one more useful than the other
 - It counts all pixels and angular scales equally.
 - A scientist may find some things more interesting than others.

- **Fisher information is geometric (unbiased)**
 - It doesn’t matter how you parameterize your map you will always get the same number.
 - If 2 quantities have a 1-1 relation, (e.g. density - potential) you get the same number.
 - This works even if the relation is non-linear!
Fisher Information Number

Examples

- Gaussian all sky maps

\[
I^{(A|B)}_{\text{Gaussian}} = \frac{1}{2} \sum_l (2l + 1) \ln \left[\frac{1 + \frac{C^S_l}{C^N_l,A} + \frac{C^S_l}{C^N_l,B}}{1 + \frac{C^S_l}{C^N_l,B}} \right]
\]

\[
I^{(A|B)} \sim \left(\frac{\sigma^B_{\text{beam}}}{\sigma^A_{\text{beam}}} \right)^2 - 1 \sim 10^{5-6}
\]

\[
e^{I^{(A|B)}} \sim 10^{10^5}
\]
Fisher Information Number

Examples

- Gaussian all sky maps

\[
I_{\text{Gaussian}}^{(A|B)} = \frac{1}{2} \sum_l (2l + 1) \ln \left[\frac{1 + \frac{C_l^S}{C_{N,A}^l} + \frac{C_l^S}{C_{N,B}^l}}{1 + \frac{C_l^S}{C_{N,B}^l}} \right]
\]

- For hi-S/N, beam limited (not noise limited) surveys

\[
I^{(A|B)} \sim \frac{\left(\frac{\sigma_B^{\text{beam}}}{\sigma_A}\right)^2}{\sigma_{\text{beam}}^2} - 1 \sim 10^{5-6}
\]

\[
e^{I^{(A|B)}} \sim 10^{10^5}
\]

» Increased number of resolved hi-S/N pixels dominates
Fisher Information Number

Summary

- Using the Fisher information metric a “geometrical” measure of the amount of information obtained by making new measurements.
 - The information measure independent of how one parameterized what one is measuring.

- This information measure is “physics free”.
 - This can be good - no scientist bias.
 - This can be bad - justify stamp-collecting.

- One can compute it for almost any type of measurement which one has a statistical model for
 - It may be difficult to compute!
 - It is easy for Gaussian systems (much of cosmology).