

CMB Polarization Measurements with QUaD

Clem Pryke - University of Chicago

Cosmic Cartography

3 December 2007

Current Total Intensity Results

Pre QUaD Polarization Results

LCDM predictions from T looking good!...

Figures from Page et al, astro-ph/0603450 and Piacentini et al, astro-ph/0507507

Why Go Further?

Why Go Further?

- At 1>100
 - ▶ Refine measurements of E and TE to further test paradigm
 - ► Try to detect lensing B to get info on neutrinos and dark energy
- At 1<100
 - Refine measurements of E and TE to constrain re-ionization
 - ▶ Try to detect gravity wave B
- QUaD is aimed at l>100, sister experiment BICEP aimed at l<100

People in QUaD

- Stanford: Sarah Church, Jamie Hinderks, Ben Rusholme, Keith Thompson, Melanie Bowden, Ed Wu
- Caltech: Andrew Lange, Jamie Bock, John Kovac, Ken Ganga (now Paris)
- Chicago: Clem Pryke, Robert Friedman, John Carlstrom, Tom Culverhouse, Erik Leitch (JPL), Robert Schwarz (South Pole)
- Cardiff: Walter Gear, Simon Melhuish, Lucio Piccirillo, Peter Ade, Mike Zemcov, Nutan Rajguru, Angiola Orlando
- Edinburgh: Andy Taylor, Michael Brown (Cambridge), Patricia Castro (Lisbon)
- Maynooth: Anthony Murphy, Creidhe O'Sullivan, Gary Cahill

The QUaD Telescope

- 2.6 meter Cassegrain radio telescope attached to front of DASI mount (3rd axis preserved)
- 31 pixel polarization sensitive bolometer camera (PSBs), no internal pol modulator (waveplate)
- Secondary supported on foam cone aperture blockage small and uniform
- DASI tower, equipment room, drive system, DAQ system re-used.
- Ground shield extended

Optical Path

QUaD in Extended Shield Feb 2005

Receiver Focal Plane

 $12\ \text{feeds}\ \textcircled{@}\ 100\text{GHz}\ (6\ \text{arcmin}),\ 19\ \textcircled{@}150\text{GHz}\ (4\ \text{arcmin})$

Polarization Sensitive Bolometers

- Two orthogonal absorber grids
- Sum of X and Y measures total intensity
- Difference measures polarization

Why at the South Pole?

- Very cold, and high altitude Very low atmospheric moisture.
- Atmosphere extremely stable (no daily sunrise/set)
- No Sun for 6 months of the year:
 - ▶ Work on instrument in summer.
 - ▶ Observe in winter.
- Fields remain at constant elevation angle
 - ▶ and superb low foreground sky available at high el!
- Existing infrastructure and logistics.

(Well actually deconvolved, low-passed, deglitched, downsampled, relative gain calibrated)

...pair sum/difference

...cut to "half-scans"... Azimuth 0.05 pair sum -0.05 0.05 pair diff -0.05 50 100 150 200 250 300 350

...remove 3rd order polynomials.

Constructing Polarization Maps

- To go from pair diff timestream to pol map need to know orientation of bolometer pairs as projected on sky
- ▶ Confirmed very close to design values using external source.
- Complete pipeline confirmed by mapping Moon
 - (has weak radial polarization pattern due to scattering as radiation exits lunar surface)

Lead/Trail Mapping

- Scan two sub fields 0.5hr sep in RA
 - ▶ Sky signal different ground signal same

Map Based Jackknifes

- To confirm data is uncontaminated (after field diff) split into approx equal subsets which should contain identical sky signal but different false signal:
 - ▶ "Deck jack" different azimuth range (different ground) with los rotation of 60 degrees.
 - ▶ "Scan jack" forward versus backwards scans
 - ▶ "Season jack" first/second halves of run
 - ▶ "Focal plane jack" bolo pair orientation groups
 - ("Frequency jack" 100 and 150GHz)
- Make maps using each half of data
 - ➤ Subtract the maps and proceed with power spectrum analysis as usual.

Take the Q/U maps...

How to make CMB power spectra step by step with pictures...

...appodize...

...Fourier transform and square...

(Dark stripe along y-axis is due to half-scan polynomial filtering)

...go from Q/U to E/B...

$$\chi = \arctan 2(v, u) - \pi/2$$

$$E = +Q\cos 2\chi + U\sin 2\chi$$

$$B = -Q\sin 2\chi + U\cos 2\chi$$

...mean in annuli is raw power spectrum.

Need to correct for noise and filtering/beam...

2005 Season Signal/Deck Jackknife

Deck jackknife tests for residual ground contamination http://arxiv.org/abs/0705.2359

2005 Season Signal/Freq Jackknife

Frequency jackknife tests for foreground contamination http://arxiv.org/abs/0705.2359

2006+7 Season Upcoming Results

Note - deck jack is real but signal spectra replaced by LCDM sim realization!

Summary of QUaD

- First season results published
 - ▶ http://arxiv.org/abs/0705.2359
- Third and final season just ended
- Still fighting with contaminants
 - Ground pickup massively reduced by field difference technique
 - ▶ But does any remain?...
 - ▶ Moon pickup being exhaustively investigated...
 - ▶ Noise modelling is tricky...
- However, for TT,TE,EE residual contamination is already very small compared to sample variance
- Trying to get season 2+3 result out very soon!