Studying scaling relation and their scatter with 10000+1 galaxy clusters

Elena Rasia
Chandra Fellow
University of Michigan

with Rebecca Stanek, Gus Evrard, Brian Nord, Frazer Pearce, Lorena Gazzola

with Maxim Markevitch, Pasquale Mazzotta, Massimo Meneghetti, Klaus Dolag

Cosmic Cartography, Chicago, 12/05/07
• In next few years large cluster surveys will be underway (e.g. eRosita, SPT, DES)
• We need to understand the connection between the observable cluster properties, the intrinsic properties and the underlying mass distribution.

1 complicated cluster
• eRosita would not have a spatial resolution as good as Chandra -> more difficult to classify objects by their morphology.
• We need to study the impact of scaling relation scatter by objects which are dynamical unstable

INTRODUCTION

10000 clusters
• Investigate the systematics that could affect the analysis of real data
• Provide a concrete theoretical framework for the statistical studies
• This entails the multivariate halo function $P(L_X, T_X, Y_{SZ}, T_{MW}, c|M)$ and its evolution
1 special simulated cluster

- Physics: radiative cooling, uniform time-dependent UV background, star formation from multi-phase interstellar medium, galactic winds powered by SN
- Mass resolution: DM particle = $1.74 \times 10^8 M_{\text{sun}}/h$ GAS particle = $2.6 \times 10^7 M_{\text{sun}}/h$
- Physical resolution: softening 2.5 kpc/h
- Total mass at R_{200}: $M_{200} = 2 \times 10^{15} M_{\text{sun}}/h$
- Active dynamic history and strong merging (Mach number 2.5)

GOAL: Test scaling relations in a very unstable dynamical situation
Scaling relation by Kravtsov et al 06

\[M_{\text{tot}} = 10^{14.41} \left(\frac{T_X}{3 \text{ keV}} \right)^{1.521} \]
\[10^{14.35} \left(\frac{M_{\text{gas}}}{2 \times 10^{13}} \right)^{0.921} \]
\[10^{14.27} \left(\frac{Y_X}{4 \times 10^{13}} \right)^{0.581} \]

\[Y_X = \frac{M_{\text{gas}}}{T_X} \]

our cluster location \(\approx \) their biggest one

all clusters

\[[710^{13} 210^{15}] M_{\text{sun}}/h \]

all \(z (=0, 0.6) \)

All quantities at \(R_{500} \)

excluding 0.15 \(R_{500} \)
1 special simulated cluster

DM

GAS

galaxies

Courtesy of Klaus Dolag
1 special simulated cluster

DM

GAS

galaxies

Courtesy of Klaus Dolag
1 special simulated cluster

DM

GAS

galaxies

Courtesy of Klaus Dolag
1 special simulated cluster

DM

GAS

galaxies

Courtesy of Klaus Dolag
Evolution intrinsic properties

Merger begins

2 centers coincide

DM bullet-like+
cold blob
Exiting R_{500}

2nd cold blob
Scaling relation

• **SIMULATION**
 • All the quantities $(T_{\text{sl}}, M_{\text{gas}}, Y_X = T_{\text{sl}} M_{\text{gas}})$ computed inside R_{500} (excluding 0.15 R_{500}) with R_{500} determined from the simulation itself

• **OBSERVATION**
 • Cluster processed through XMAS2 to obtained X-ray images
 • Mask blobs
 • All the quantities from X-ray measurements computed in R_{500} (excluding the core) estimated from X-ray.
The overall behavior of the M-T is changed substantially. Points are closer to the relation by Kravtsov et al. and within 10% of scatter.
The is a larger spread in the gas mass computed with the X-ray technique, at the same time more points approach to the best-fit by Kravtsov.
The observed Y_x parameter is in agreement with Kravtsov relation. The "observed scatter" is substantially reduced.
Conclusions

• We test the robustness of the scaling relation and we find that they are satisfied also in the case of a strong merger
• The X-ray Temperature is good proxy for mass when an accurate masking is done
• The Y_X parameter is very robust again merger due to the opposite effect that M_{gas} and T_X are experiencing
• NEXT STEP: upcoming surveys will have less spatial and spectral resolution, a detailed masking would not be possible.
10000 galaxy clusters

- Millenium Gas Simulations (Pearce et al. 07).
- $\Omega_L = 0.75$, $\Omega_M = 0.25$, $\Omega = 0.045$, $h = 0.73$, $n = 1$, $\sigma_8 = 0.9$
- Volume = comoving cube 500 Mpc/h
- N particles = 5×10^8 DM + 5×10^8 GAS
- Mass resolution = 1.422×10^{10} M$_{\text{sun}}$/h (DM), 3.12×10^9 M$_{\text{sun}}$/h
- Gravitational Softening 25 kpc/h

Clusters with $M_{200} > 5 \times 10^{13}$ M$_{\text{sun}}$/h
- 3791 at $z=0$
- 3734 at $z=0.21$
- 2653 at $z=0.51$
Comparing intrinsic simulation temperature measurements with the

$\sigma^2_{EW} = 0.04$

$\sigma^2_{sl} = 0.015$

$\sigma^2_{MW} = 0.03$

- T_{MW} is almost 10% lower than TX, with high scatter.

- T_{sl} describes more properly the X-ray temperature, since it is on average closer and shows a very small scatter.

Global temperature in $[0.15-1] \times R_{500}$
Scaling relation: M-T

- Region: [0.15-1] R_{500}
- All clusters with $T > 3.5$ keV.
- Power law consistent with Arnaud et al 05, Sanderson et al. 03, Finoguenov et al. 01.
- Steeper than simulations with cooling.
- Standard deviation bigger at high redshift
 - $\sigma^2_{z=0} = 0.10$
 - $\sigma^2_{z=1} = 0.13$
Scaling relation: M-L

- The scatter of our M-L relation is low both at high and low redshift
 - $\sigma^2_{z=0} = 0.08$
 - $\sigma^2_{z=1} = 0.09$
- Excluding core reduces a lot the scatter (Maughan 07)
Scaling relation: L-T

- L-T relation of clusters with $T > 3.5$ keV is steeper than observed.
- $\sigma^2_{z=0} = 0.13$
 $\sigma^2_{z=1} = 0.15$
- Fixing $\alpha = 3.3$ the difference in normalization is consistent to an negative evolution.
Conclusions & Future plans

• The X-ray temperature overestimate the true temperature of the clusters (T_{MW})
• M-T: scatter is bigger to high redshift, relation are steeper than in cooling simulations
• M-L: excluding the core reduces the scatter
• L-T relation presents the highest scatter in the relation studied. The relation at redshift 0.5 is consistent with slightly negative evolution
• FUTURE: big covariance matrix considering both